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Abstract— In this paper, we develop efficient local linear NARX (Nonlinear Auto-Regressive model with eX-
ogenous variables) models based on Kohonen’s Self-Organizing Map. These models are evaluated as function
approximators in the task of identifying the inverse dynamics of a hydraulic actuator. Simulation results demon-
strate that the proposed SOM-based linear NARX structures consistently outperform standard MLP-based global
models for system identification.
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Resumo— Neste trabalho, são desenvolvidos modelos NARX localmente lineares a partir da rede auto-
organizável de Kohonen. Estes modelos são avaliados como aproximadores de funções na tarefa de identificação
da dinâmica inversa de um atuador hidráulico. Simulações computacionais demonstram que as estruturas NARX
propostas têm desempenho superior ao de modelos NARX globais baseados na rede MLP.
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hidráulico.

1 Introduction

Many control schemes are dependent on the avail-
ability of a good model of the system to be con-
trolled (Norgaard et al., 2000). For any such
scheme to work sufficiently well, the system model
obtained by the system identification procedure
must be of a certain standard. The system iden-
tification procedure therefore needs to be chosen
with care.

In producing a model of a particular system,
essentially the system is being approximated by
the model in terms of both structure and param-
eters. Since neural networks have been shown to
be universal approximators (Hornik et al., 1989),
they can be used for the purposes of system iden-
tification. As a technique in general, they may
be able to provide an universal means for model-
ing nonlinear systems, assuming network training
techniques and computational complexity do not
restrict their use.

Identification of nonlinear dynamic systems
with neural networks was consistently evaluated
by Narendra and Parthasarathy (1990) who, un-
der mild conditions, have shown that such NARX
neural networks are able to solve difficult func-
tion approximation problems. Since then, neural-
based system identification procedures have been
dominated by standard supervised architectures,
such as the Multilayer Perceptron (MLP) and the
Radial Basis Functions (RBF) networks.

More recently, the self-organizing map (SOM)
has emerged as a viable alternative to more
traditional neural-based approaches to identifi-
cation and control of nonlinear dynamical sys-
tems (Barreto and Araújo, 2004; Principe et al.,
1998; Kohonen et al., 1996). In this paper, local
linear models based on the SOM are developed
and used as NARX models to approximate the in-
verse dynamics of an hydraulic actuator. Local

models have been a source of much interest be-
cause they have the ability to adhere to the local
shape of an arbitrary surface, which is difficult es-
pecially in cases when the dynamical system char-
acteristics vary considerably throughout the state
space.

The technique of local linear neural models is
closely related to the piecewise linear modelling
approach, widely used within the field of adap-
tive control. The idea of local linear modelling is
to specify a set of hyperplanes (i.e. adaptive fil-
ters), each of which is only locally used, in order
to closely approximates nonlinear surface that de-
fines the input-output dynamics of the process of
interest.

The remainder of the paper is organized as fol-
lows. In Section 2 SOM architecture and its learn-
ing process are described. In Section 3 two SOM-
based local linear NARX models are introduced.
Simulations and performance are presented in Sec-
tion 4. The paper is concluded in Section 5.

2 The Self-Organizing Map

The self-organizing map, introduced by Kohonen
(1997), is commonly used to transform high di-
mensional input vectors into a lower dimensional
discrete representation that preserves topological
neighborhoods. Basically, it works as a vector
quantization algorithm that adaptively quantize
the input space by discovering a set of representa-
tive prototype (reference) vectors. The basic idea
of SOM is to categorize vectorial stochastic data
into different groups by means of a winner-take-all
selection rule.

The SOM is composed of two fully connected
layers: an input layer and a competitive layer.
The input layer simply receives the incoming in-
put vector and forwards it to the competitive layer
through weight vectors. The goal of SOM is to



represent the input data distribution by the dis-
tribution of the weight vectors. A competitive
learning drives the winning weight vector to be-
come more similar to the input data. Throughout
this paper, we define the weight vector between
input layer and neuron i as follows:

wi = (wi,1, wi,2, . . . , wi,j , . . . , wi,p+q)
T (1)

where wi,j ∈ R denotes the weight connecting
node j in the input layer with neuron i, and (p+q),
is the dimension of the input vector. In what fol-
lows, a brief description of the original SOM algo-
rithm is given.

Firstly we use Euclidean distance metric to
find the current winning neuron, i∗(t), as given
by the following expression:

i∗(t) = arg min
∀i

‖x(t) −wi(t)‖ (2)

where x(t) ∈ R
p+q denotes the current input vec-

tor, wi(t) ∈ R
p+q is the weight vector of neuron

i, and t symbolizes the time steps associated with
the iterations of the algorithm.

Secondly, it is necessary to adjust the weight
vectors of the winning neuron and of those neurons
belonging to its neighborhood:

wi(t+1) = wi(t)+α(t)h(i∗, i; t)[x(t)−wi(t)] (3)

where 0 < α(t) < 1 is the learning rate and
h(i∗, i; t) is a gaussian weighting function that lim-
its the neighborhood of the winning neuron:

h(i∗, i; t) = exp

(

−
‖ri(t) − ri∗(t)‖2

2σ2(t)

)

(4)

where ri(t) and ri∗(t), are respectively, the posi-
tions of neurons i and i∗ in a predefined output
array where the neurons are arranged in the nodes,
and σ(t) > 0 defines the radius of the neighbor-
hood function at time t.

The variables α(t) and σ(t) should both decay
with time to guarantee convergence of the weight
vectors to stable steady states. In this paper, we
adopt for both an exponential decay, given by:

α(t) = α0

(

αT

α0

)(t/T )

and σ(t) = σ0

(

σT

σ0

)(t/T )

(5)
where α0 (σ0) and αT (σT ) are the initial and final
values of α(t) (σ(t)), respectively. The operations
defined by Eqs. (2) and (5) are repeated until a
steady state of global ordering of the weight vec-
tors has been achieved. In this case, we say that
the map has converged.

In addition to usual clustering properties, the
resulting map also preserves the topology of the
input samples in the sense that adjacent patterns
are mapped into adjacent regions on the map. Due
to this topology-preserving property, the SOM is

able to cluster input information and spatial rela-
tionships of the data on the map. This clustering
abilities of the SOM has shown to be quite useful
for the identification of nonlinear dynamical sys-
tems (Barreto and Araújo, 2004). However, the
number of neurons required by the SOM to pro-
vide a good approximation of a given input-output
mapping is very high, specially when compared to
the MLP and RBF neural networks. To some-
what alleviate this limitation of the plain SOM
algorithm, we introduce next two SOM-based lo-
cal linear NARX models.

3 Local Linear NARX Models

In this section, we describe two approaches to the
system identification problem that uses the SOM
as a building block. The basic idea behind both
is the segmentation of the input space into non-
overlapping regions, called Voronoi cells, whose
centroids correspond to the weight vectors of the
SOM. Then an interpolating hyperplane is asso-
ciated with each Voronoi cell or to a small set of
them, in order to estimate the output of the pro-
cess.

Let us assume that the dynamical system we
are dealing with can be described by the NARX
model:

y(t) = f [y(t − 1), . . . , y(t − p); u(t),

u(t − 1), . . . , u(t − q + 1)] (6)

where f(·) is an unknown nonlinear mapping, and
q and p, q < p, are the orders of the input and
output regressors, respectively. However, for the
inverse modelling task we are interested in, the
neural network models should implement the in-
verse mapping f−1(·), given by:

u(t) = f−1[u(t−1), . . . , u(t−q); y(t−1), . . . , y(t−p)]
(7)

whose goal is to estimate the input of a given sys-
tem based on previous values of the input and
output variables. This kind of nonlinear inverse
model of a system and the corresponding online
identification of its parameters are useful, for ex-
ample, for real-time control purposes (Norgaard
et al., 2000).

3.1 Local Linear Mapping

The first architecture to be described is called Lo-

cal Linear Mapping (LLM) (Walter et al., 1990).
The basic idea of the LLM is to associate each
neuron in the SOM with a conventional FIR/LMS
linear filter. The SOM array is used to quantize
the input space in a reduced number of prototype
vectors (and hence, Voronoi cells), while the filter
associated with the winning neuron provides a lo-
cal linear estimator of the output of the mapping
being approximated.



Thus, for the inverse modelling task of inter-
est, each input vector x(t) ∈ R

p+q is defined as
follows:

x(t) = [u(t−1), . . . , u(t−q); y(t−1), . . . , y(t−p)]T

(8)
Clustering (or vector quantization) of the in-

put space X is performed by the LLM as in the
usual SOM algorithm, with each neuron i owning
a prototype vector wi, i = 1, . . . , N .

Additionally, there is a coefficient vector ai ∈
R

p+q associated to each weight vector wi, which
plays the role of the coefficients of a linear NARX
model:

ai(t) = [bi,1(t), . . . , bi,q(t), ai,1(t), . . . , ai,p(t)]
T

(9)
The output value of the LLM-based NARX

model is then computed as follows:

û(t) =

q
∑

m=1

bi∗,m(t)u(t − m) +

p
∑

l=1

ai∗,l(t)y(t − l)

= aT
i∗(t)x(t) (10)

where ai∗(t) is the coefficient vector associated to
the winning neuron which is used to build a local
linear approximation of the output of the desired
nonlinear mapping.

The rule for updating the prototype vectors
wi follows exactly the one given in Eq. (3). The
learning rule of the coefficient vectors ai(t) is an
extension of the plain LMS normalized algorithm,
that also takes into account the influence of the
neighborhood function h(i∗, i; t):

ai(t + 1) = ai(t) + α′h(i∗, i; t)∆ai(t) (11)

where 0 < α′ � 1 denotes the learning rate
of the coefficient vector, and ∆ai(t) is the er-
ror correction rule of Widrow-Hoff (Widrow and
Hoff, 1960), given by:

∆ai(t) =
[

u(t) − aT
i (t)x(t)

] x(t)

‖x(t)‖2
(12)

where u(t) is the actual output of the inverse non-
linear mapping being approximated.

3.2 Prototype-Based Local Least-Squares Regres-

sion Model

The algorithm to be described in this sec-
tion, called K-winners SOM (KSOM), was orig-
inally applied to nonstationary time series predic-
tion (Barreto et al., 2004; Barreto et al., 2003).
In this paper we aim to evaluate this architec-
ture in the context of nonlinear system identifica-
tion. For training purposes, the KSOM algorithm
depends on the VQTAM (Vector-Quantized Tem-

poral Associative Memory) model Barreto and
Araújo (2004), which is a simple extension of the

SOM algorithm that can be used for system iden-
tification and control purposes. Roughly speak-
ing, the VQTAM is just a SOM algorithm that si-
multaneously performs vector quantization on the
input and output spaces of a given nonlinear map-
ping.

In the VQTAM model, the input vector at
time step t, x(t), is composed of two parts. The
first part, denoted xin(t) ∈ R

p+q, carries data
about the input of the dynamic mapping to be
learned. The second part, denoted xout(t) ∈ R,
contains data concerning the desired output of this
mapping. The weight vector of neuron i, wi(t),
has its dimension increased accordingly. These
changes are formulated as follows:

x(t) =

(

xin(t)
xout(t)

)

and wi(t) =

(

win
i (t)

wout
i (t)

)

(13)
where win

i (t) ∈ R
p+q and wout

i (t) ∈ R are, respec-
tively, the portions of the weight (prototype) vec-
tor which store information about the inputs and
the outputs of the desired mapping. Depending
on the variables chosen to build the vector xin(t)
and scalar xout(t) one can use the SOM algorithm
to learn the forward or the inverse mapping of a
given plant (system). For instance, if the interest
is in the inverse identification, then one defines:

xin(t) = [u(t − 1), . . . , u(t − q); (14)

y(t − 1), . . . , y(t − p)]T

xout(t) = u(t) (15)

The winning neuron at time step t is deter-
mined based only on xin(t)

i∗(t) = argmin
i∈A

{‖xin(t) −win
i (t)‖}. (16)

For updating the weights, however, both xin(t)
and xout(t) are used:

∆win
i (t) = α(t)h(i∗, i; t)[xin(t) −win

i (t)] (17)

∆wout
i (t) = α(t)h(i∗, i; t)[xout(t) − wout

i (t)] (18)

where 0 < α(t) < 1 is the learning rate, and
h(i∗, i; t) is a time-varying Gaussian neighborhood
function defined as in Eq. (4). In words, the learn-
ing rule in Eq. (17) performs topology-preserving
vector quantization on the input space and the
rule in Eq. (18) acts similarly on the output space
of the mapping being learned.

After training the VQTAM model, the coeffi-
cient vector a(t) of a linear NARX model for esti-
mating the output of the mapping is computed for
each time step t by the standard least-squares esti-
mation (LSE) technique, using the weight vectors
of the K, K ≥ 1, neurons closest to the current
input vector, instead of using the original data
vectors.

Let the set of K winning weight vectors at
time t to be denoted by {wi∗

1
,wi∗

2
, . . . ,wi∗

K
}. Re-

call that due to the VQTAM training style, each



weight vector wi(t) has a portion associated with
xin(t) and other associated with xout(t). So, the
KSOM uses the corresponding K pairs of proto-
type vectors {win

i∗
k

(t), wout
i∗
k

(t)}K
k=1, with the aim of

building a local linear function approximator at
time t:

wout
i∗
k

= aT (t)win
i∗
k

(t), k = 1, . . . , K (19)

where a(t) = [b1(t), . . . , bq(t), a1(t), . . . , ap(t)]
T is

a time-varying coefficient vector. Equation (19)
can be written in a matrix form as:

wout(t) = R(t)a(t) (20)

where the output vector wout and the regression
matrix R at time t are defined by the following
equations:

wout(t) = [wout
i∗
1
,1(t) wout

i∗
2
,1(t) · · · wout

i∗
K

,1(t)]
T (21)

R(t) =











win
i∗
1
,1(t) win

i∗
1
,2(t) · · · win

i∗
1
,p+q(t)

win
i∗
2
,1(t) win

i∗
2
,2(t) · · · win

i∗
2
,p+q(t)

...
...

...
...

win
i∗
K

,1(t) win
i∗
K

,2(t) · · · win
i∗
K

,p+q(t)











(22)
In practice, we usually have p+ q > K, i.e. R

is a non-square matrix. In this case, we resort to
the Pseudo-inverse method (Principe et al., 2000;
Haykin, 1994). Thus, the coefficient vector a(t) is
given by:

a(t) =
(

RT (t)R(t) + λI
)−1

RT (t)wout(t) (23)

where I is a identity matrix of order K and λ > 0
(e.g. λ = 0.001) is a small constant added to the
diagonal of RT (t)R(t) to make sure that this ma-
trix is full rank. Once a(t) has been computed, we
can estimate the output of the nonlinear mapping
being approximated by the output of a NARX
model:

û(t) =

q
∑

m=1

bm(t)u(t − m) +

p
∑

l=1

al(t)y(t − l)

= aT (t)xin(t) (24)

Note that the KSOM is considered a local lin-
ear NARX model due to the use of a subset of
K weight vectors chosen from the whole set of N
weight vectors. This is also one of the main differ-
ences between KSOM and the LLM approaches.
While the former uses K � N prototype vectors
to build the local linear model, the latter uses a
single prototype. Another main difference is that
the LLM approach uses a LMS-like learning rule to
update the coefficient vector of the winning neu-
ron. Once training is completed all coefficient vec-
tors ai, i = 1, . . . , N , are freezed for posterior use.
The KSOM, instead, uses a LSE-like procedure to
find a single the coefficient vector a(t), so that the

linear mapping is built dynamically at each time
step.

Some authors have proposed local linear
approaches that closely resemble the KSOM
model (Principe et al., 1998; Chen and Xi, 1998).
Principe et al. (1998) proposed a neural architec-
ture that is equivalent to KSOM in the sense that
the coefficient vector a(t) is computed from K pro-
totype vectors of a trained SOM using the LSE
technique. However, the required prototype vec-
tors are not selected as the K nearest prototypes
to the current input vector, but rather automat-
ically selected as the winning prototype at time
t and its K − 1 topological neighbors. If topo-
logical defects are present, as usually occurs for
multidimensional data, the KSOM provides more
accurate results.

Chen and Xi (1998) also proposed a local
linear regression model whose coefficient vectors
are computed using the prototypes of a competi-
tive learning network through the Recursive Least-

Squares (RLS) algorithm. However, the com-
petitive network used by Chen and Xi does not
have the topology-preserving properties of the
SOM algorithm, which has shown to be impor-
tant for system identification purposes (Barreto
and Araújo, 2004).

To the best of our knowledge, no performance
comparison between the LLM and KSOM ap-
proaches as nonlinear system identification tools
have been reported in the literature. In this sense,
this is one of the main contributions of this paper.

4 Simulations

The proposed SOM-based local linear NARX
models are evaluated in the identification of the
inverse dynamics of a hydraulic actuator and com-
pared with standard MLP-based global NARX
models. Figure 1 shows the measured values
of the valve position (input time series, {u(t)})
and the oil pressure (output time series, {y(t)}).
The oil pressure signal sequence shows a highly
oscillating behavior caused by mechanical reso-
nances (Sjöberg et al., 1995).

The LLM- and KSOM-based local linear
NARX models are compared with an one-hidden-
layer MLP trained by the backpropagation algo-
rithm (MLP-1h), another one-hidden-layer MLP
trained by the Levenberg-Marquardt (MLP-LM)
algorithm and, finally, a two-hidden-layers MLP
(MLP-2h) trained by the backpropagation algo-
rithm. For all MLP-based global NARX models,
the transfer function of the neurons of the hidden
layers is the hyperbolic tangent function, while the
output neuron uses a linear one.

After some experimentation with the data,
the best configuration of the MLP-1h and MLP-
LM models have 20 units in the hidden layer.
For the MLP-2h, the number of neurons in sec-



0 100 200 300 400 500 600 700 800 900 1000
−1.5

−1

−0.5

0

0.5

1

1.5

va
lve

 o
pe

ni
ng

time

(a)

0 100 200 300 400 500 600 700 800 900 1000
−4

−3

−2

−1

0

1

2

3

4

oi
l p

re
ss

ur
e

time

(b)

Figure 1: Measured values of valve position (a) and oil pressure (b).

ond layer is heuristically set to half the number of
neurons in the first hidden layer. The MLP was
trained with constant learning rate equal to 0.1.
No momentum term is used.

During the estimation (testing) phase, for
evaluation purposes, the neural models should
compute the estimation error (residuals) e(t) =
u(t) − û(t), where u(t) is desired output of each
neural model, and û(t) is the estimates provided
by each neural model. For quantitative assessment
of the performance of all neural-based NARX
models accuracy we use the NMSE (normalized

mean squared error):

NMSE =

∑M
t=1 e2(t)

M · σ̂2
u

=
σ̂2

e

σ̂2
u

(25)

where σ̂2
u is the variance of the original time series

{u(t)}M
t=1 and M is the length of the sequence of

residuals.
The models are trained using the first 512

samples of the input/output signal sequences and
tested with the remaining 512 samples. The in-
put and output memory orders are set to p = 4
and q = 5, respectively. For each SOM-based
model, the initial and final learning rates are set
to α0 = 0.5 and αT = 0.01. The initial and final
values of radius of the neighborhood function are
σ0 = N/2 and σT = 0.001, where N , the number
of neurons in the SOM, is set to 20. The learning
rate α′ is set to 0.01.

For the KSOM-based model, the best num-
ber of winning neurons was found to be K = 15.
In the first simulation, the NMSE values were av-
eraged over 100 training/testing runs, in which
the weights of the neural models were randomly
initialized at each run. The obtained results are
shown in Table 1, where are displayed the mean,
minimum, maximum and variance of the NMSE
values, measured along the 100 training/testing

Table 1: Performance of the MLP-based and local
linear models using real-world data.

Neural NMSE

Models mean min max variance

KSOM-15 0.0019 0.0002 0.0247 1.15×10−5

LLM 0.0347 0.0181 0.0651 1.58×10−4

MLP-LM 0.0722 0.0048 0.3079 0.0041
MLP-1h 0.3485 0.2800 0.4146 4.96×10−4

MLP-2h 0.3516 0.0980 2.6986 0.0963

runs. In this table, the models are sorted accord-
ing to the mean NMSE values.

One can easily note that the performances
of KSOM- and LLM-based local models on this
real-world application are far better than those
of MLP-based global models. The better perfor-
mance of the KSOM-based model in comparison
to the LLM-based is due to the use of a second-
order algorithm to estimate the coefficient vector
a(t), as indicated in Eq. (23). Among the MLP-
based global models, the use of second-order in-
formation also explains the better performance of
the MLP-LM, which uses information extracted
from the Hessian matrix.

For a simple evaluation of the results in qual-
itative terms, Figure 2 shows typical sequences of
estimated values of the valve position provided by
the best local and global NARX models. Figure 2a
shows the sequence generated by the KSOM-based
model, while Figure 2b shows the sequence esti-
mated by the MLP-LM model.

5 Conclusion

In this paper, we have attempted to tackle the
problem of nonlinear system identification using
the local linear modelling methodology. For that
purpose we introduced two local linear NARX
models based on Kohonen’s self-organizing map
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Figure 2: Typical estimated sequences of the valve position provided by the KSOM and MLP-LM models.
Open circles ‘◦’ denote actual sample values, while the solid line indicates the estimated sequence.

and evaluated them in the identification of the in-
verse dynamics of a hydraulic actuator. The first
local NARX model proposed builds a fixed num-
ber of linear LMS filters, one for each Voronoi
region associated with the prototype vectors of
the SOM. The second one builds only a single
LMS/Newton linear filter using the prototypes
vectors closest to the current input vector, it has
been shown that the proposed local linear NARX
models consistently outperform the conventional
MLP-based global NARX models.
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